
An Improved Extraction Algorithm from Domain
Specific Hidden Web

Juhi Sharma
MTech Research Scholar ,

Department of CSE
MIET Meerut

Mukesh Rawat
Assistant Professor,
Department of CSE

MIET, Meerut

Abstract- The web contains a large amount of information
which is increasing by magnitude every day. The World Wide
Web consists of Surface Web (Publicly Indexed Web) and the
Deep Web which consists of Hidden Data, also- referred to by
different names such as Hidden Web, Deepnet or the Invisible
Web. A user can directly access the surface web through a
Search Engine but to access the hidden data/information, the
users have to manually feed a set of keywords in a typical
search interface to access these hidden web pages from source
web sites. The problem area we are working on is devising
efficient mechanisms to extract this information automatically
beforehand since "crawlers" cannot access it otherwise. In
this paper we present a mechanism to extract search forms
from HTML pages spread over the web, automatic filling and
submission of those forms at their source sites to download the
Hidden Web pages in a repository for further use by web
crawlers.

General Terms-Query Interface for data extraction from
Hidden Web.

Keywords-Hidden Web, Query Interface, Data Mining

1. INTRODUCTION

It has been widely researched that only a frugal percentage
of web content can be reached by web crawlers from the
following hyperlinks [7,12]. As per many researchers, the
size of hidden web has increased exponentially with time
since organizations have put a lot of valuable information
which can be accessed through search forms [12].It has
been estimated that the hidden web contains information to
the order of petabytes. This information is of very high
quality. It also contains important information for the users.
The World Wide Web consists of Surface Web (Publicly
Indexed Web pages) as well as Deep Web (Hidden data).
Over the years the number of Publicly Indexed Web pages
has grown to billions and also ‘deepened’ i.e. the Hidden
Data has increased. The Hidden Data is accessed by filling
Query Forms of the web-data sources. These Query Forms
consist of attributes that need to be filled by the user in
order to gain access. For example, if we need to access
research papers from a university website the Query Form
consists of attributes like Author, Year of Publication,
Journal name etc. So the problem is that filling these fields
manually is a tedious process and therefore we want the

Hidden Data to be available without the need to fill these
Query Forms.

1.1 RELATED WORK
In the book published by Chris Sherman and Gary Price
[2], "the paradox of invisible web"is discussed at length.
They have discussed the reasons why crawlers can not see
the hidden information but the methodology of uncovering
this has been omitted.
Similarly Sriram Raghavan and Hector Garcia-Molina [3]
have also discussed the limitations of current day crawlers.
In their paper a model called Hidden Web Exposer (HiWE)
is described and a technique called Layout-based
Information Extraction Technique (LITE) is also discussed.
The researchers have also discussed design challanges for a
hidden web crawler. Their research proposed a "task
specific, human assisted approach" to extract data from the
hidden web. The key challenges in discovering hidden web
data is the mechanism involved to automate it in processing
form based interfaces, provide input to fill out forms and
the issue of how best to equip crawlers with the necessary
input values for use in constructing search queries.

1.2 PROPOSED WORK
As of now a user needs to fill the Query form in order to
access hidden data from web-data sources manually which
is a time consuming process. Our aim is to automate this
process, so that the user can get this hidden data without the
need to fill each field of the Query form manually.
Automation of this process will definitely speed up the
search process which is desired. In this method we will
help user access the hidden data directly from the database
containing the hidden data fetched from web-data sources
previously which will reduce the search time considerably.
Whenever a user enters a search query to access the hidden
data the search engines will directly go to the Hidden
Database created by us and fetch the matching results
instead of going to the query form page of web-data
sources.
The following section discusses the functional components
of the modules we have implemented.

Juhi Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8239-8242

www.ijcsit.com 8239

Fig 1: Architecture of Domain Specific Hidden Data Web Extractor

2. GENERAL ARCHITECTURE OF DOMAIN SPECIFIC

HIDDEN WEB DATA EXTRACTOR
The general architecture of our proposed system consists of
various components as shown in the figure above which
help us to accomplish the task of Automatic Extraction of
Domain Specific Hidden Web Data. The Search Engine
uses our proposed system to directly return hidden web-
data to the user without the need to fill Search Interface
forms which prior to this is a very time consuming process.

The main components of our architecture are the modules.
There are five modules in our architecture
1. Page Fetcher – The function of this component is to
fetch HTML pages from the HTML page repository one by
one.
2. Form Analyzer- The function of this component is to
extract the form from the HTML page fetched by the
Document Fetcher.
3. Search Interface Extractor- The function of this
module is to identify whether the form extracted by the

Html Page
Repository

Form ‐
Repository

Search ‐
Interface
Repository

Hidden Web
Data
Repository

Page Fetcher Form‐Analyzer

Search‐interface
Extractor

Label Fetcher Form Submission

Web–data
Source (WWW)

Web Crawler

World Wide
Web

LABEL 1 VALUE 1

LABEL n VALUE n

LABEL3 VALUE3

1 2

3

45

USER

Juhi Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8239-8242

www.ijcsit.com 8240

ex_form (sr)
{
s_chk<<characters in file represented by sr
If ("<form" found in s_chk)
Write characters between "<form>" and
"</form>" in a file
}

Form Analyzer is a Search Interface or an Input Form. It
discards the Input type forms and saves the search forms.
4. Label Fetcher- The job of this module is to fill the
Search Form extracted by the previous module. The labels
and their values are fetched from a table known as the
Label Value Set and filled in the form.
5. Form Submission- This module goes to the website of
the Web-data source mentioned in the Form coding submits
this form and stores that data into a repository from where
the search engine can directly access it
The modules in our system architecture reference other
components like the databases and tables. There are four
databases and one table in our system. The databases are
used to store :
A. HTML Page Repository- As the name suggests this
database stores the HTML pages crawled by the Web
crawler component of the search engine.
B. Form Repository- This database stores the various
forms extracted out of the HTML pages.
C. Search Interface Repository- The Search Forms are
stored in this database.
D. Hidden Web Data Repository- The final output of our
proposed system is stored in this database. It stores the
hidden information fetched from the Web-data Source by
submitting Search forms.
E. Label Value Set- This is a table that stores the set of
label and corresponding values. This table helps in filling
the Search Forms.
The system architecture works as follows; first we have a
database of HTML Web pages in our HTML Page
Repository then each HTML page is fed by the Document
Fetcher into the Form Analyzer here the form is extracted
from the HTML page and the rest of the code is rejected
and the Form is stored in the Form Repository. Next the
Search Interface Extractor module analyses the forms
present in the Form Repository and select only Search
forms and reject all the forms of other types. The Search
Forms selected are stored in the Search Interface
Repository. The Label Fetcher module picks the search
form and finds the values of each field present in them and
fills it. The Form Submission module submits the Search
Form at the Web-data Source and fetches the hidden
information and stores it in the Hidden Web-Data
Repository. The user can now directly access this
information from this repository using any search software.

3. DESCRIPTION OF THE MODULES
3.1 Page Fetcher
The first module in the system architecture is the Document
Fetcher. The functionality of this module is to fetch the
HTML documents present in the HTML Page Repository
one at a time. The input to this module is a HTML
document and this document is fed into the next module in
our architecture which is the Form Analyzer. The algorithm
of this module is implemented using the function extract
(URL of the HTML Page Repository). The algorithm of
this module is as follows in the Fig.2.

Figure 2: Algorithm For Page Fetcher

3.2 Form Analyzer
 The Form Analyzer module is the second module in our
system architecture. The input to this module is an HTML
page from the previous module and output of this module is
the Form if present in the HTML page. The function of
Form Analyzer module is that it looks for the Form tag
inside that HTML page and if it finds a form tag then it
copies the information within the form tag into a file with
the name same as the name of the fetched file and store it
into the Form Repository and discards the rest of the code.
If there is no Form tag present in the HTML page fetched
then it discards the complete page and moves on to the next
page. The algorithm for the Form Analyzer is implemented
by the function ex_form (URL of the HTML file in the
repository). The algorithm used by the Form Analyzer is
as shown in the Fig. 3.

Fig 3: Algorithm for Form Analyzer

3.3 Search Interface Extractor
The third module is the Search Interface Extractor. The
input to this module is the Form extracted from the HTML
page by the Form Extractor in the previous step. The
function of this module is to identify whether the Form is a
Query Interface or Input Form. In this module we look for
the label of the button at the end of the form. If the label of
the button is one of these ‘Search’, ‘Go’, ‘Find’ then the
Form is definitely a Query Form and it is stored into the
Search Interface Repository else the Form is of Input Type
and it is discarded. The algorithm used by this module is as
follows in Fig.4 .

3.4 Label Fetcher
The Label Fetcher module is the fourth module in our
system architecture. Search interfaces from the Search
interface Repository is input into this module and the
output of this module is the filled Search Interface. In this

Extract (s1)
{
If (s1 is directory)
S1<<s1+”/”
St[] << files and directories in s1
For i =1 to length [st]
s3<<s1+st[i]
Extract (s3)
Else
Ex_form (s1)
}

Juhi Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8239-8242

www.ijcsit.com 8241

module each field present in the Search Form is considered
one by one and than matched using a table known as the
Label-Value Set. Each fields label is matched with the list
in the table and if a match is present than the corresponding
value in the table is filled in the Form against the field. This
is how the complete form is filled using the Label-Value
Set table.

Fig 4: Algorithm for Search Interface Extractor

3.5 Form Submission
This is the last module in our System Architecture. The
input to this module is the filled Search Interface and the
output of this module is the Hidden Web-data which is
stored in a repository from where the user can directly
access it through the search engine. In this module the
Form is submitted at the Web-data Source on the World
Wide Web and the hidden information is fetched from the
servers and stored in the Hidden Web-data Repository.

4. CONCLUSION
Over the years, the surface web (Publicly Indexed Web)
has grown to billions of HTML pages. Simultaneously, the
web has been rapidly “deepened” by the massive web data-
sources and a far more significant amount of information is

hidden in the deep web, behind query forms of web data-
sources like amazon.com. These data-sources are also
referred as hidden or invisible web. These hidden sources
allow the users to access the underlying information by
querying through their query interfaces. Where in data-
sources contain the attributes that tend to describe the
information accessible through them. For example, the
query interface of a source like amazon.com contains
attributes such as author, title, ISBN etc. These query
interfaces acts as the entry points to the hidden or invisible
web and therefore became potential candidates to be
identified to extract hidden data.Our work presents a
mechanism to extract pages, forms, identifying search
forms and extract out their labels which could be further
used by the hidden web crawler. The hidden web crawler
automatically fills these forms with the values available in
the label-value-set table in the database and send these
forms to the World Wide Web and extract out the deep
information and analyze it. We propose to extend our work
to support regional languages and further to optimally
design mechanisms to index as well as extract such
documents.

REFERENCE
[1] E. Agichtein and L. Gravano. Querying text databases for efficient

information extraction. In ICDE, 2003.
[2] The Invisible Web: Uncovering Information Sources Search Engines

Can't See by Chris Sherman and Gary Price (Cyber Age Books, 0-
910965-51-X).

[3] Crawling the Hidden Web, Sriram Raghavan and Hector Garcia-
Molina, Proceedings of the 27th VLDB Conference, Roma, Italy,
2001

[4] E. Agichtein, P. Ipeirotis, and L. Gravano. Modeling query-based
access to text databases.In WebDB, 2003.

[5] Article on New York Times. Old Search Engine, the Library, Tries
to Fit Into a Google World. Available at:
http://www.nytimes.com/2004/06/21/technology/21LIBR.html, June
2004.

[6] The Open Directory Project, http://www.dmoz.org.
[7] M. K. Bergman. The deep web: Surfacing hidden

value,http://www.press.umich.edu/jep/07-01/bergman.html.
[8] S. Byers, J. Freire, and C. T. Silva. Efficient acquisition of web
data through restricted query interfaces. In WWW Posters, 2001.

[9] J. P. Callan and M. E. Connell. Query-based sampling of text
databases. ACM Transactions on Information Systems, 19(2):97–
130, 2001.

[10] B. He, M. Patel, Z. Zhang, and K. C.-C. Chang. Accessing the Deep
Web: A survey. Communications of the ACM, 50(5):95–101, 2007

[11] J. Madhavan, S. Jeffery, S. Cohen, X. Dong, D. Ko, C. Yu, and A.
Halevy. Web-scale Data Integration: You can only afford to Pay As
You Go. In CIDR, 2007..

[12] K. C.-C. Chang, B. He, C. Li, and Z. Zhang. Structured databases on
the web: Observations and implications. Technical report, UIUC.

ex_form (String sr)
{
Var f1, f2
Var fin, fin1
Var ch, ch1
Var fou
F1 <<file represented by string "sr"
Fin <<connect inputstream with f1
While (ch ? read from fin! =EOF)
{
S1 ←ch
}
If (s1 contains any string such as "go,
submit, search, find book etc")
{

fin1 <<connect input stream with f1
f2 <<new file created in "d:/hdoc/searchpage/"+f1
fou <<connect output stream with f2

While (ch1 ←read from fin1! = EOF)
 {
 write ch1 in f2
 }

}}

Juhi Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8239-8242

www.ijcsit.com 8242

